1,037 research outputs found

    Strain engineering in graphene by laser irradiation

    No full text
    We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer

    Fiber-coupled Antennas for Ultrafast Coherent Terahertz Spectroscopy in Low Temperatures and High Magnetic Fields

    Get PDF
    For the purposes of measuring the high-frequency complex conductivity of correlated-electron materials at low temperatures and high magnetic fields, a method is introduced for performing coherent time-domain terahertz spectroscopy directly in the cryogenic bore of existing dc and pulsed magnets. Miniature fiber-coupled THz emitters and receivers are constructed and are demonstrated to work down to 1.5 Kelvin and up to 17 Tesla, for eventual use in higher-field magnets. Maintaining the sub-micron alignment between fiber and antenna during thermal cycling, obtaining ultrafast (<200{<200}~fs) optical gating pulses at the end of long optical fibers, and designing highly efficient devices that work well with low-power optical gating pulses constitute the major technical challenges of this project. Data on a YBCO superconducting thin film and a high mobility 2D electron gas is shown.Comment: 8 pages, 9 figure

    S and D Wave Mixing in High TcT_c Superconductors

    Full text link
    For a tight binding model with nearest neighbour attraction and a small orthorhombic distortion, we find a phase diagram for the gap at zero temperature which includes three distinct regions as a function of filling. In the first, the gap is a mixture of mainly dd-wave with a smaller extended ss-wave part. This is followed by a region in which there is a rapid increase in the ss-wave part accompanied by a rapid increase in relative phase between ss and dd from 0 to π\pi. Finally, there is a region of dominant ss with a mixture of dd and zero phase. In the mixed region with a finite phase, the ss-wave part of the gap can show a sudden increase with decreasing temperature accompanied with a rapid increase in phase which shows many of the characteristics measured in the angular resolved photoemission experiments of Ma {\em et al.} in Bi2Sr2CaCu2O8\rm Bi_2Sr_2CaCu_2O_8Comment: 12 pages, RevTeX 3.0, 3 PostScript figures uuencoded and compresse

    Measuring the gap in ARPES experiments

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is considered as the only experimental tool from which the momentum distribution of both the superconducting and pseudo-gap can be quantitatively derived. The binding energy of the leading edge of the photoemission spectrum, usually called the leading edge gap (LEG), is the model-independent quantity which can be measured in the modern ARPES experiments with the very high accuracy--better than 1 meV. This, however, may be useless as long as the relation between the LEG and the real gap is unknown. We present a systematic study of the LEG as a function of a number of physical and experimental parameters. The absolute gap values which have been derived from the numerical simulation prove, for example that the nodal direction in the underdoped Bi-2212 in superconducting state is really the node--the gap is zero. The other consequences of the simulations are discussed.Comment: revtex4, 9 pages, 6 figure

    Effect of Interband Transitions on the c axis Penetration Depth of Layered Superconductors

    Full text link
    The electromagnetic response of a system with two planes per unit cell involves, in addition to the usual intraband contribution, an added interband term. These transitions affect the temperature dependence and the magnitude of the zero temperature c-axis penetration depth. When the interplane hopping is sufficiently small, the interband transitions dominate the low temperature behaviour of the penetration depth which then does not reflect the linear temperature dependence of the intraband term and in comparison becomes quite flat even for a d-wave gap. It is in this regime that the pseudogap was found in our previous normal state calculations of the c-axis conductivity, and the effects are connected.Comment: 8 pages, 5 figure

    Landau Transport equations in slave-boson mean-field theory of t-J model

    Full text link
    In this paper we generalize slave-boson mean-field theory for tJt-J model to the time-dependent regime, and derive transport equations for tJt-J model, both in the normal and superconducting states. By eliminating the boson and constraint fields exactly in the equations of motion we obtain a set of transport equations for fermions which have the same form as Landau transport equations for normal Fermi liquid and Fermi liquid superconductor, respectively with all Landau parameters explicity given. Our theory can be viewed as a refined version of U(1) Gauge theory where all lattice effects are retained and strong correlation effects are reflected as strong Fermi-liquid interactions in the transport equation. Some experimental consequences are discussed.Comment: 19 page

    Coupling between planes and chains in YBa2Cu3O7 : a possible solution for the order parameter controversy

    Full text link
    We propose to explain the contradictory experimental evidence about the symmetry of the order parameter in YBa2Cu3O7YBa_{2}Cu_{3}O_{7} by taking into account the coupling between planes and chains. This leads to an anticrossing of the plane and chain band. We include an attractive pairing interaction within the planes and a repulsive one between planes and chains, leading to opposite signs for the order parameter on planes and chains, and to nodes of the gap because of the anticrossing. Our model blends s-wave and d-wave features, and provides a natural explanation for all the contradictory experimentsComment: 13 pages, revtex, 2 uucoded figure

    New lanostanes and naphthoquinones isolated from Antrodia salmonea and their antioxidative burst activity in human leukocytes

    Get PDF
    Four new compounds were isolated from the basidiomata of the fungus Antrodia salmonea, a newly identified species of Antrodia (Aphyllophorales) in Taiwan. These new compounds are named as lanosta-8,24-diene-3 beta,15 alpha,21-triol (1), 24-methylenelanost-8-ene-3 beta,15 alpha,21-triol (2), 2,3-dimethoxy-5-(2',5'-dimethoxy-3',4'-methylenedioxyphenyl)-7-methyl-[1,4]-naphthoquinone (3), and 2,3-dimethoxy-6-(2,5'-dimethoxy-3',4'-methylenedioxyphenyl)-7-methyl-[1,4]-naphthoquinone (4), respectively. Their structures were elucidated by spectroscopic methods. An in vitro cellular functional assay was performed to evaluate their anti-oxidative burst activity in human leukocytes. They showed inhibitory effects against phorbol 12-myristate-13-acetate (PMA), a direct protein kinase C activator, induced oxidative burst in neutrophils (PMN) and mononuclear cells (MNC) with 50% inhibitory concentration (IC50) ranging from 3.5 to 25.8 mu M. The potency order of these compounds in PMA-activated leukocytes was as 1 > 3 > 4 > 2. They were relatively less effective in formyl-Met-Leu-Phe (fMLP), a G-protein coupled receptor agonist, induced oxidative burst, except for compounds 3 and 4 in fMLP-activated PMN. These results indicated that three (1, 3, and 4) of these four newly identified compounds displayed antioxidative effect in human leukocytes with different potency and might confer anti-inflammatory activity to these drugs

    Kinetic energy driven superconductivity in doped cuprates

    Full text link
    Within the t-J model, the mechanism of superconductivity in doped cuprates is studied based on the partial charge-spin separation fermion-spin theory. It is shown that dressed holons interact occurring directly through the kinetic energy by exchanging dressed spinon excitations, leading to a net attractive force between dressed holons, then the electron Cooper pairs originating from the dressed holon pairing state are due to the charge-spin recombination, and their condensation reveals the superconducting ground-state. The electron superconducting transition temperature is determined by the dressed holon pair transition temperature, and is proportional to the concentration of doped holes in the underdoped regime. With the common form of the electron Cooper pair, we also show that there is a coexistence of the electron Cooper pair and antiferromagnetic short-range correlation, and hence the antiferromagnetic short-range fluctuation can persist into the superconducting state. Our results are qualitatively consistent with experiments.Comment: 6 pages, Revtex, two figures are included, corrected typo

    An angle-resolved photoemission spectral function analysis of the electron doped cuprate Nd_1.85Ce_0.15CuO_4

    Full text link
    Using methods made possible by recent advances in photoemission technology, we perform an indepth line-shape analysis of the angle-resolved photoemission spectra of the electron doped (n-type) cuprate superconductor Nd_1.85Ce_0.15CuO_4. Unlike for the p-type materials, we only observe weak mass renormalizations near 50-70 meV. This may be indicative of smaller electron-phonon coupling or due to the masking effects of other interactions that make the electron-phonon coupling harder to detect. This latter scenario may suggest limitations of the spectral function analysis in extracting electronic self-energies when some of the interactions are highly momentum dependent.Comment: 8 pages, 5 figure
    corecore